3. Лучко І. А. Результати фізичного моделювання дії вибуху на викид сферичних зарядів у шаруватих грунтах // Вісник Національного технічного університету України «КІП». Серія «Гірництво». – 2001. – Вип. 6. – С. 17–21.

4. Лучко І. А., Лучко А. І. Дослідження особливостей дії вибуху на викид горизонтальних циліндричних зарядів скінченних розмірів в однорідних слабозв'язаних грунтах // Вісник Національного технічного університету України «КПІ». Серія «Гірництво». – 2004. – Вип. 10. – С. 6–13.

5. Лучко І. А., Лучко А. І. Фізичне моделювання дії вибуху на викид горизонтальних циліндричних зарядів скінченних розмірів у шаруватих грунтах // Вісник Національного технічного університету України «КПІ». Серія «Гірництво». – 2005. – Вип. 12. – С. 3–7.

6. Адушкин В. В., Скоморохов Н. Д. Исследование однорядного взрыва на выброс. – М.: Недра: Взрывное дело. – № 82/39. – 1980. – С. 94–105.

УДК 622.235 + 622.231

ДИНАМИКА ФОРМИРОВАНИЯ МОНОТРЕЩИНЫ ВЗРЫВОМ В ГОРНОМ МАССИВЕ

В. Г. Кравец, докт. техн. наук, А. Л. Ган, магистр (НТУУ «КПИ»), П.З. Луговой, докт. техн. наук (ИМ НАНУ), З. Барановский, канд. техн. наук (Силезский технический университет, г. Гливице, РП)

Розглянуто математичну модель і алгоритм розрахунку полів напружень при взаємодії фронтів ударних хвиль від вибуху ряду паралельних шпурових зарядів з використанням методики періодичних задач дифракції пружних хвиль.

Наиболее типичной ситуацией при отбойке штучного камня является вариант расположения одинаковых штуровых зарядов с определенным шагом по заданной прямой [1]. Это позволяет для случаев, когда штуровые заряды подрываются одновременно, определить напряжения в массиве по методике решения периодических задач дифракции упругих волн [2].

Если заряды расположены в *m* цилиндрических полостях с параллельными продольными осями, то можно ввести *m* цилиндрических систем координат (r_k , θ_k , $X_{3,k}$) так, чтобы оси $X_{3,k}$ совпадали с продольными осями шпуровых зарядов, плоскости $X_{3,k} = 0$ были совмещены, а координатные оси $X_{1,k}$, $X_{2,k}...X_{1,m}$, $X_{2,m}$ параллельны и одинаково ориентированы, при $k \neq m$.

В этом случае в плоскости $X_{3, k} = 0$, если она проходит через середины длин шпуровых зарядов, реализуются условия плоской деформации. На рис. 1 представлено расположение систем координат для двух соседних шпуров. Для того чтобы свести задачу к квазистационарной, проведем интегральную оценку действия шпурового заряда. Это даст возможность записать граничные условия задачи в виде радиальных напряжений, действующих на стенки шпуров с определенной частотой:

$$P_0 e^{-i\omega t} = P(t); \quad e^{-i\omega t} = \cos \omega t + i \sin \omega t.$$
 (1)

Поле напряжений симметрично относительно оси X_1 . Поскольку в шпурах для отбойки камня радиус шпура $R \ll L$ – длины шпура, то массив находится в условиях плоской деформации, то есть смещение его точек параллельно плоскости X_1 , X_2 и не зависит от X_3 .

Решение соответствующих волновых уравнений проводится с помощью метода, который позволяет при точном удовлетворении граничных условий свести задачу к бесконечной системе алгебраических уравнений. Вследствие симметрии задачи относительно оси OX_1 решение несколько упрощается, так как коэффициенты перед неизвестными с нечетными индексами равны нулю. Для получения конкретных числовых решений используется приближенный метод редукции.

Для определения P₀ и ω воспользуемся уравнением

$$\int_{0}^{T} P(t)dt = P_0 \int_{0}^{T} \sin \omega t dt, \qquad (2)$$

геометрическая интерпретация которого показана на рис. 2.

Компоненты вектора смещений и тензора напряжений в полярной системе координат (r, θ) можно записать через скалярный потенциал продольных волн Φ и векторный потенциал сдвиговых волн Ψ . В рассматриваемом случае потенциалы Φ и Ψ удовлетворяют двум волновым уравнениям

$$\left(\Delta_{r\theta} + \alpha^2\right) \Phi = 0; \left(\Delta_{r\theta} + \beta^2\right) \Psi = 0, \qquad (3)$$

Рис. 1. Расположение систем координат для двух соседних шпуров

Рис. 2. Импульс взрыва: а – измеренный; б – интерпретированный

где волновые числа $\alpha^2 = \frac{\omega^2}{c_1^2}$; $\beta^2 = \frac{\omega^2}{c_2^2}$; $c_1 = \sqrt{\frac{\lambda + 2\mu}{\rho}}$ – скорость продольных волн;

 $c_2 = \sqrt{\frac{\mu}{\rho}}$ – скорость поперечных волн; λ , μ – постоянные Ляме, ρ – плотность

массива.

Компоненты вектора смещений в этом случае имеют вид:

$$u_r = \frac{\partial}{\partial r} \Phi + \frac{1}{r} \frac{\partial}{\partial t} \Psi; \ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \Phi - \frac{\partial}{\partial \gamma} \Psi.$$
(4)

Компоненты тензора напряжений записываются следующим образом:

$$-\frac{1}{2\mu}\sigma_{r} = a\alpha^{2}\Phi + \frac{1}{r}\left(\frac{\partial}{\partial r}\Phi + \frac{1}{r}\frac{\partial^{2}}{\partial\theta^{2}}\Phi + \frac{1}{r}\frac{\partial}{\partial\theta}\Psi\right);$$

$$\frac{1}{2\mu}\sigma_{\theta} = (1-a)\alpha^{2}\Phi + \frac{1}{r}\left(\frac{\partial}{\partial r}\Phi + \frac{1}{r}\frac{\partial^{2}}{\partial\theta^{2}}\Phi + \frac{1}{r}\frac{\partial}{\partial\theta}\Psi - \frac{\partial^{2}}{\partial r\partial\theta}\Psi\right);$$

$$\frac{1}{2\mu}\tau_{r\theta} = \frac{1}{2}\beta^{2}\Psi + \frac{1}{r}\left(\frac{\partial}{\partial r}\Psi + \frac{1}{r}\frac{\partial^{2}}{\partial\theta^{2}}\Psi - \frac{1}{r}\frac{\partial}{\partial\theta}\Phi + \frac{\partial^{2}}{\partial r\partial\theta}\Phi\right),$$
(5)
$$r_{z} = \frac{\lambda + 2\mu}{2\mu}.$$

Выберем потенциалы Ф и Ψ в виде тригонометрических рядов [3] при рассмотрении взаимодействия волн, которые генерируются двумя параллельными шпурами:

$$\Phi = \sum_{q=1}^{2} \sum_{n=0}^{\infty} \left[A_n^{(q)} \cos n\theta q + B_n^{(q)} \sin n\theta q \right] H_n(\alpha r_q);$$

$$\Psi = \sum_{q=1}^{2} \sum_{n=0}^{\infty} \left[C_n^{(q)} \cos n\theta q + D_n^{(q)} \sin n\theta q \right] H_n(\beta r_q),$$
(6)

где H_n – функция Ханкеля первого рода; $A_n^{(q)}$, $B_n^{(q)}$, $C_n^{(q)}$, $D_n^{(q)}$ – произвольные постоянные.

Произвольные постоянные в (6) выберем таким образом, чтобы волновое глоле было симметричным относительно оси X_1 , то есть чтобы компоненты смещения удовлетворяли условиям: $u(X_1, X_2) = -u(-X_1, X_2)$, $\vartheta(X_1, X_2) = \vartheta(-X_1, X_2)$.

Если вектор смещения $U = \sum_{q=1}^{2} U^{(q)}(r_q, \theta_q)$, то эти условия эквивалентны следующим: $u_r^{(1)}(r, \theta) = u_r^{(2)}(r, \pi - \theta), \ u_{\theta}^{(1)}(r, \theta) = -u_{\theta}^{(2)}(r, \pi - \theta).$

Это приводит к следующей связи между постоянными:

$$A_n^{(2)} = (-1)^n A_n^{(1)}; \ B_n^{(2)} = (-1)^{n+1} B_n^{(1)}; \ C_n^{(2)} = (-1)^{n+1} C_n^{(1)}; \ D_n^{(2)} = (-1)^n D_n^{(1)}.$$
(7)

Таким образом, благодаря симметрии задачи количество произвольных постоянных уменьшается в два раза. Неопределенные постоянные определяются из двух бесконечных систем уравнений, которые получаются при удовлетворении условий на одном из контуров Γ_q . Одна из этих систем будет содержать в качестве неизвестных A_n и D_n , а вторая -- B_n и C_n .

Для данной задачи постоянные $B_n = C_n = 0$, значит, волновые потенциалы (8) приводятся к более простому виду:

$$\Phi = \sum_{n=0}^{\infty} A_n \Big[H_n (\alpha \Gamma_1) \cos n\theta_1 + (-1)^n H_n (\beta \Gamma_2) \cos \theta_2 \Big];$$

$$\Psi = \sum_{n=0}^{\infty} D_n \Big[H_n (\alpha \Gamma_1) \sin n\theta_1 + (-1)^n H_n (\beta \Gamma_2) \sin \theta_2 \Big].$$
(8)

Для унификации представления результатов перейдем к безразмерным линейным координатам, приняв за единицу измерения радиус отверстия *R*. При этом граничные условия запишутся в виде

$$\sigma_{r_q} = -P_0, \ \tau_{\gamma_q \theta_q} = 0, \ \gamma_q = 1, \ (q = 1, 2).$$
(9)

После процедуры обезразмеривания волновые числа α и β также становятся безразмерными: $\alpha = \frac{\omega R}{c_1}$, $\beta = \frac{\omega R}{c_2}$, поэтому обозначения для них

оставим прежними.

Используя теорему о сложении для цилиндрических функций [3], преобразуем потенциалы Φ и Ψ к координатам $r_2 \theta_2$.

$$\Phi(r_{2}, \theta_{2}) = \sum_{n=0}^{\infty} \left[(-1)^{n} A_{n} H_{n}(\alpha r_{2}) + E_{n} S_{n} I_{n}(\alpha r_{2}) \right] \cos \theta_{2};$$

$$\Psi(r_{2}, \theta_{2}) = \sum_{n=0}^{\infty} \left[(-1)^{n} D_{n} H_{n}(\beta r_{2}) + Q_{n} I_{n}(\beta r_{2}) \right] \sin \theta_{2}, \quad (r_{2} < \delta),$$
(10)

22 где

$$\begin{split} S_n &= \sum_{p=0}^{\infty} A_p \Big[H_{p-n}(\alpha \delta) + (-1)^n H_{p+n}(\alpha \delta) \Big];\\ Q_n &= \sum_{p=0}^{\infty} B_p \Big[H_{p-n}(\beta \delta) - (-1)^n H_{p+n}(\beta \delta) \Big];\\ E_n &= \begin{cases} \frac{1}{2} & \text{при} \quad n = 0\\ \frac{1}{1} & \text{при} \quad n \neq 0 \end{cases}. \end{split}$$

При подстановке решений (10) в граничные условия (9) получаем бесконечную систему алгебраических уравнений:

$$X_{n,1} A_n + X_{n,3} S_n + \xi_{n,1} D_n + \xi_{n,3} Q_n = F_{1n};$$

$$X_{n,2} A_n + X_{n,4} S_n + \xi_{n,2} D_n + \xi_{n,4} Q_n = 0;$$

$$(n = 0, 1, 2, ...).$$
(11)

Здесь обозначено:

$$\begin{split} X_{n,1} &= (-1)^n [\left(a \alpha^2 - n^2 \right) H_n(\alpha) + \alpha H'_n(\alpha)]; \\ X_{n,2} &= (-1)^n n [H_n(\alpha) - \alpha H'_n(\alpha)]; \\ \xi_{n,1} &= (-1)^n n [H_n(\beta) - \beta H'_n(\beta)]; \\ \xi_{n,2} &= (-1)^n \left[\left(\frac{1}{2} \beta^2 - n^2 \right) H_n(\beta) + \beta H'_n(\beta) \right]; \\ X_{n,3} &= E_n [\left(a \alpha^2 - n^2 \right) I_n(\alpha) + \alpha I'_n(\alpha)]; \\ X_{n,4} &= n [I_n(\alpha) - \alpha I'_n(\alpha)]; \\ \xi_{n,3} &= n [I_n(\beta) - \beta I'_n(\beta)]; \\ \xi_{n,4} &= \left(\frac{1}{2} \beta^2 - n^2 \right) I_n(\beta) + \beta I'_n(\beta); \\ F_{10} &= \frac{R^2}{2\mu} A; \ F_{1n} = 0 \ npu \ n \neq 0 . \end{split}$$

Если в системе (12) сделать замену неизвестных

$$X_{n,1}A_n + \xi_{n,1}D_n = C_n; \quad X_{n,2}A_n + \xi_{n,2}D_n = B_n,$$

то она преобразуется в бесконечную систему алгебраических уравнений с определителем нормального типа.

Приближенное решение будем искать с помощью мстода редукции, оставив в системе (12) лишь (2N + 1) уравнений. Это эквивалентно замене рядов (8) конечными суммами:

$$\Phi^{(N)} = \sum_{n=0}^{N} A_n \Big[H_n(\alpha r_1) \cos n\theta_1 + (-1)^n H_n(\alpha r_2) \cos n\theta_2 \Big];$$

$$\Psi^{(n)} = \sum_{n=1}^{N} D_n \Big[H_n(\beta r_1) \sin n\theta_1 + (-1)^n H_n(\beta r_2) \sin n\theta_2 \Big].$$
(13)

С помощью решений (13) можно удовлетворить граничным условиям (9) лишь с точностью до первых (N + 1) гармоник. При получении конкретных численных результатов будем пользоваться практической сходимостью.

После определения постоянных A_n и D_n вычисляются напряжения σ_r и σ_{θ} в точках линии центров 0₁0₂, указанных на рис. 1, по формулам

$$\sigma_{r} = -\frac{2\mu}{R^{2}} \left[a\alpha^{2}\Phi + \frac{1}{r} \left(\frac{\partial\Phi}{\partial r} + \frac{1}{r} \frac{\partial^{2}\Phi}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial\Psi}{\partial \theta} - \frac{\partial^{2}\Psi}{\partial r\partial \theta} \right) \right];$$
(14)

$$\sigma_{\theta} = \frac{2\mu}{R^2} \left[(1-a)\alpha^2 \Phi + \frac{1}{r} \left(\frac{\partial \Phi}{\partial r} + \frac{1}{r} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{1}{r} \frac{\partial \Psi}{\partial \theta} - \frac{\partial^2 \Psi}{\partial r \partial \theta} \right) \right]$$

Резюмируя изложенное и учитывая, что взрыв шпуровых зарядов генерирует коротковолновые нагрузки, приходим к выводу, что характер распределения напряжений в зоне влияния взаимодействующих зарядов будет существенно отличаться от статического. Преобладающими по величине становятся напряжения σ_{rr} , причем максимумы достигаются в точке 0 между центрами зарядов. Уровень напряжений около первой точки скольжения резко повышается, при этом как σ_{rr} , так и $\sigma_{\theta\theta}$ достигают наибольшего значения в точке 0. Как видно из результатов проведенного математического моделирования, при взаимодействии целого числа волн от шпуровых зарядов также наблюдаются явления типа аномалий Вуда.

Резкое увеличение напряжений $\sigma_{r\theta}$ в точке 0, которое носит резонансный характер, создает благоприятные условия для зарождения монотрещины, что позволит значительно увеличить расстояние между шпуровыми зарядами, уменьшить расход ВВ и объем буровых работ, не ухудшая при этом качество отбойки штучного камня.

1. Карасев Ю. Г., Бакка Н. Т. Природный камень. Добыча блочного и стенового камня. – Санкт-Петербургский горный ин-т. – 1997. – 428 с.

2. Гузь А. Н., Кубенко В. Д., Черевко М. А. Дифракция упругих волн. – К.: Наук. думка. – 1978. – С. 262–283.

3. Тихонов А. Н., Самарский А. А. Уравнения математической физики. – М.: Наука, 1972. – 735 с.