ВЛИЯНИЕ КОНСТРУКЦИИ ЗАБОЙКИ НА ВРЕМЯ ЕЕ РАЗРУШЕНИЯ

В. Г. Кравец, докт. техн. наук (НТУУ «КПИ»), А. М. Масюкевич, канд. физ.мат. наук (ННИИОТ), А. Л. Ган, магистр (НТУУ «КПИ»), А. В. Мизюк, инж. (ННИИОТ)

Розглянуто процес вибухового руйнування набивки у вигляді капсули з криволінійною поверхнею, в яку засипаються сипучі матеріали. Час, необхідний для руйнування цієї набивки, визначається її геометрією і властивостями матеріалу. Набивка такої конструкції дозволяє подовжити час перебування продуктів детонації у свердловині (шпурі), що збільшує частку енергії вибуху, яка витрачається на корисну роботу.

Эффективность взрывных работ определяется качеством дробления породы и затратами на взрывные работы. Повышению эффективности взрывных работ посвящено огромное количество исследований [1-25, 27]. Это различные способы заряжания скважины, инициирования взрыва, схемы коммутации массовых взрывов, создание экологически чистых взрывчатых веществ (ВВ), средства и способы локализации пылегазовых выбросов в рабочей зоне карьера. Одним из способов повышения эффективности взрыва является применение забойки. Исследования влияния конструкции И компонентного состава забойки на энергетические параметры взрыва и параметры отбойки были начаты еще в 50-х гг. ХХ столетия [1-25]. Такое количество работ (в основном экспериментальных) обусловлено тем, что взрывные работы осуществляются с различной целью (рыхление породы, образование полостей и профильных выемок и т.п.) и в разнообразных по структуре и физико-механическим свойствам породах. Следует отметить, что в последнее время появились и теоретические исследования влияния забойки на эффективность взрыва [16, 18, 20-24].

До настоящего времени рассматривались забойки, которые отделялись от скважинного или шпурового заряда горизонтальной поверхностью. В настоящей работе изучается действие продуктов детонации (ПД) на забойку с криволинейной поверхностью и исследуются ее запирающие свойства. Конструкция такой забойки следующая: на заряд BB помещается пластмассовая капсула, имеющая волнообразную или криволинейную (рис. 1) поверхность. В капсулу засыпается сыпучий материал. Толщина стенок капсулы $\Delta h \approx 3...5$ мм.

Рис. 1. Схема разделения заряда на элементарные объемы

Поверхность капсулы представляет собой эллиптический параболоид (см. рис. 1), в общем виде описываемый уравнением

$$Z = h \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right),\tag{1}$$

где h – высота забойки, м; x, y и a, b – соответственно текущие координаты и полуоси эллипса. Начало системы координат помещаем в точке соприкосновения капсулы забойки с центром поверхности заряда радиусом r_3 на его верхней части, то есть длина заряда в этой системе координат имеет отрицательное значение ($-l_3$).

С учетом цилиндрической симметрии заряда и забойки ($a = b = r_3$) поверхность капсулы описывается уравнением

$$Z = hr^2 / r_{_3}^2 , (2)$$

где *r* – текущая координата.

Таким образом, между капсулой и зарядом имеется воздушный зазор переменной высоты, за исключением точки *O*, в которой капсула соприкасается с зарядом (см. рис. 1).

Скорость инициирования BB V_1 всегда больше скорости его детонации D, и фронт детонационной волны (ДВ) OC (рис. 2) в скважине не будет перпендикулярным относительно оси заряда. За время t, пока ДВ от точки Bдойдет до точки $C(t = r_3/D)$, инициирование BB осуществится на расстоянии $BO = V_1 t = V_1 r_3/D$ и, наконец, дойдет до точки O. Фронт ДВ распространяется по направлению вектора нормали \vec{n} к нему. В каждый последующий момент времени, когда ДВ выходит на границу заряда OD, поток ПД уходит перпендикулярно к поверхности заряда в направлении капсулы. Под действием газообразных ПД, достигнувших забойки, последняя начнет перемещаться и разрушаться. На основании законов сохранения энергии и массы получим

$$\frac{MV^2}{2} + E_{\rm BHI} + E_{\rm KHI} + E_{\rm pasp} = mQ; \quad \rho_{\rm BB} = \rho_{\rm HI}, \qquad (3)$$

где M – масса забойки, кг; V – скорость ее перемещения, м/с; $E_{B\PiД}$ и $E_{K\PiД}$ – внутренняя и кинетическая энергия ПД, Дж; E_{pa3p} – энергия разрушения капсулы, Дж; ρ_{BB} и $\rho_{\Pi Д}$ – плотность ВВ и ПД, кг/м³; m – масса ВВ, кг; Q – удельная теплота взрыва, Дж/кг.

Рис. 2. Распределение сил в капсуле при взрыве

Подойдя к поверхности капсулы, ПД, в силу кривизны ее поверхности, устремляются по касательной, например, в точке E, в направлении точки А. Это приводит к повышенной концентрации ПД в пространстве возле точек соприкосновения капсулы и стенки скважины. В этих точках давление ПД на капсулу будет значительно больше, чем у ее вершины в точке O.

Когда ударная волна (УВ) ПД достигает капсулы (например, в точке K), в теле капсулы в точке O возникает сила \vec{F}_1 (см. рис. 2), параллельная касательной ее поверхности в этой точке и направленная в сторону стенки скважины.

Аналогичная ситуация будет наблюдаться в каждой точке капсулы. Поскольку наиболее вероятным результатом этого будет разрушение капсулы и всей забойки, первый член в уравнении (3) можно не учитывать. Тогда энергия разрушения определится по формуле

$$E_{\text{pasp}} = \frac{PV_3}{k-1} - E_{\text{BII},} - E_{\text{KII},}$$
(4)

где P – среднее давление ПД в объеме заряда ($P = \rho_{BB} D/8$), Па; V_3 – объем заряда; k – показатель изэнтропы; $mQ = PV_3/(k-1)$ [12].

Чтобы определить $E_{B\PiД}$ и $E_{K\PiД}$, заряд и зазор между зарядом и забойкой разобьем на элементарные цилиндрические объемы ΔV_i , для определения которых радиус заряда разделим на *n* равных частей Δr_i (i = 1, 2, ... n). Длина образующей будет равна $l_3 + h_j$ (h_j – среднее расстояние от поверхности заряда в точке $\Delta r_i/2$ до поверхности капсулы), а величину h_i определим из формулы

$$h_{i} = (h_{i} - h_{i-1})/2.$$
(5)

Тогда внутренняя энергия E_{3BH} ПД в элементарном объеме ΔV_{3i} , длина образующей которого равна длине заряда l_3 , будет равна

$$E_{3BH} = \frac{P_i \Delta V_{3i}}{k-1} = \frac{P_i}{k-1} \int_0^{\Delta r} r dr \int_{-l_3}^0 dz \int_0^{2\pi} d\theta = 2\pi \frac{P_i}{k-1} \frac{l_3}{r_3^2} \int_0^{\Delta r} r dr = \frac{\pi P_i}{k-1} l_3 \Delta r^2 = \frac{\pi P_i l_3}{k-1} \frac{r_3^2}{n^2} = \frac{P_i}{k-1} \frac{V_3}{n^2}.$$
 (6)

Теплота взрыва массы Δm_i заряда ВВ в объеме ΔV_{3i} равна $\Delta m_i \cdot Q$. Из равенства этой теплоты Δm_i внутренней энергии E_{3BH} можно определить давление ПД в объеме V_i :

$$P_{i} = \frac{(k-1)n^{2}}{\pi l_{3} r_{3}^{2}} \Delta m_{i} Q = \frac{(k-1)n^{2}}{V_{3}} \Delta m_{i} Q, \qquad (7)$$

где $\Delta m_i - n$ -я часть массы BB, которая содержится в объеме ΔV_{3i} .

Формулой (7) определено давление ПД от взрыва заряда массой Δm_i в элементарном объеме ΔV_{3i} . Давление ПД P'_i в объеме ΔV_i отличается от давления P_i в объеме ΔV_{3i} из-за наличия зазора. Внутренняя энергия $E_{\rm BIIД}$ определяется формулой

$$E_{\text{BIIJI}} = \frac{P_i'}{k-1} \left[\Delta V_{3i} + \int_0^{\Delta r} r dr \int_0^{h_j} dz \int_0^{2\pi} d\theta \right] = \frac{P_i'}{k-1} \left[\Delta V_{3i} + \pi h_j \Delta r^2 \right] =$$
$$= \frac{P_i'}{k-1} \left[\pi l_3 \frac{r_3^2}{n^2} + \pi h_j \frac{r_3^2}{n^2} \right] = \frac{P_i'}{k-1} \pi \left(l_3 + h_i \right) \frac{r_3^2}{n^2}, \tag{8}$$

где P'_i – давление ПД в объеме ΔV_i , которое можно определить из уравнения состояния

$$P_i \Delta V_{3i}^3 = P_i' \Delta V_i^3; \qquad P_i' = P_i \left(\frac{l_3}{l_3 + h_j}\right)^3.$$
 (9)

Кинетическая энергия ПД в элементарном объеме

$$E_{\rm KIII,I} = \frac{\Delta m_i U^2}{2} = \frac{\rho_{\rm BB} U^2}{2} \int_0^{\Delta r} r dr \int_0^{h_j} dz \int_0^{2\pi} d\theta = \frac{\rho_{\rm BB} U^2}{2} \pi h_j \frac{r_s^2}{n^2} = \frac{\pi}{2} \rho_{\rm BB} U^2 h_j \frac{r_s^2}{n^2}, \quad (10)$$

где *U* – скорость движения ударной волны, м/с.

Таким образом, энергия разрушения, обусловленная действием ПД в элементарном объеме ΔV_i , запишется как

$$E_{\text{pasp.}i} = \frac{P_i}{k-1} \frac{V_3}{n^2} - \frac{P_i'}{k-1} \pi \left(l_3 + h_j \right) \frac{r_3^2}{n^2} - \frac{\pi}{2} \rho_{\text{BB}} U^2 h_j \frac{r_3^2}{n^2}.$$
 (11)

Давление УВ на капсулу в каждой точке ее поверхности равно P'_i и направлено по оси *Z*, а упомянутая выше сила $\vec{F_1}$, которую следует теперь обозначить $\vec{F_{1i}}$, равна

$$\vec{F}_{li} = \vec{P}_{li} \cos\alpha, \qquad (12)$$

где α – угол между \vec{P}_i и касательной к поверхности капсулы, град.

Например, в точке *O*, координаты которой по оси *R* равны $R_{i-1} = (i-1)\Delta r$, а по оси *Z* равны $Z_{i-1} = h_{i-1} (i-1)^2 \Delta r^2 / r_3^2$, уравнение касательной имеет вид

$$2h_{i-1}\frac{r}{r_{3}^{2}}\left[r-(i-1)\Delta r\right]+\frac{1}{r_{3}^{2}}\left[hr^{2}-h_{i-1}(i-1)^{2}\Delta r^{2}\right]=0$$
(13)

или

$$2h_{i-1}\frac{r}{r_{3}^{2}}\left[r-(i-1)\frac{r_{3}}{n}\right]+\frac{1}{r_{3}^{2}}\left[hr^{2}-h_{i-1}(i-1)^{2}\frac{r_{3}^{2}}{n}\right]=0,$$

где *r* – текущая координата по оси *R*.

Угол α между вектором \vec{P}'_i и вектором касательной к поверхности капсулы $\delta \vec{r}$, который можно определить с помощью уравнения (13), равен

$$\cos\alpha = \frac{\vec{P}_i' \,\delta \,\vec{r}_i}{\sqrt{\left(P_i'\right)^2 \left(\delta r\right)^2}} \,. \tag{14}$$

Как отмечено выше, часть ПД устремится к верхней части капсулы в направлении касательной в каждой точке $\delta \vec{r_i}$, создавая вдоль ее поверхности неравномерное распределение плотности этих ПД (максимальная плотность будет в точке A, а минимальная – в точке O). Функцией распределения частиц (молекул) ПД является распределение Максвелла–Больцмана, поскольку эта функция описывает распределение частиц в произвольном силовом поле, которое в данном случае определяется силами, приводящими к «скольжению» ПД вдоль поверхности капсулы и их неравномерному распределению.

Среднее число частиц ПД в каждой точке поверхности

$$\vec{n}_i = 1 / \left[\exp\left(-\frac{E_{\Pi i}}{kT}\right) \right], \tag{15}$$

где \vec{n}_i – среднее число частиц в каждой точке поверхности; $E_{\Pi i}$ – их полная энергия в этих точках, Дж; k – постоянная Больцмана; T – температура, К.

Полная энергия

$$E_{\Pi i} = \pi \frac{P_i'}{k-1} \left(l_3 + h_j \right) \frac{r_3^2}{n^2} + \frac{\pi}{2} \rho_{\rm BB} U^2 h_j \frac{r_3^2}{n^2} .$$
(16)

Подставляя в формулу (15) полную энергию (16) и температуру взрыва, характерную для данного BB, получим среднее число частиц (молекул) в *i*-м элементарном объеме ΔV_i . Зная молекулярную массу $m_{\rm M}$ частиц ПД, можно определить массу Δm_i и плотность частиц, сосредоточенных в каждом ΔV_i :

$$\Delta m_i = m_{\rm M} \vec{n}_i; \qquad \rho_i = \Delta m_i / \Delta V_i, \tag{17}$$

где ρ_i – плотность ПД в ΔV_i с учетом неравномерности их распределения, кг/м³.

Новое давление P''_i ПД, оказываемое на каждый элемент поверхности капсулы, можно определить по известной формуле

$$P_i'' = \frac{\rho_i D^2}{8} . (18)$$

Следует отметить, что давление P''_i отличается от P'_i тем, что последнее обусловлено действием равномерно распределенных газообразных ПД в объеме ΔV_i , а P''_i учитывает их давление на капсулу в условиях неодинаковой плотности ПД в зазоре.

Процесс разрушения твердого тела – это процесс зарождения и раскрытия трещин. В физике твердого тела понятие поверхностной энергии связано с энергетическим состоянием атомного слоя вещества, выходящего на свободную поверхность тела. А. Грифитс положил поверхностную энергию γ (Дж/м²) как меру энергетических затрат при разрушении тел. При этом модель строится на энергетическом балансе, реализуемом в теле, которое содержит трещину в поле растягивающих напряжений σ_p . При наличии трещины длиной L потенциальная энергия тела $U_{\rm n}$ уменьшается на величину ΔU в сравнении с тем же телом без трещины [26, 27]:

$$\Delta U = -\frac{\sigma_{\rm p}^2}{4E}\pi L^2,\tag{19}$$

где E – модуль Юнга; ΔU – упругая энергия тела с трещиной, Дж.

Тело с трещиной, в отличие от тела без нее, обладает дополнительной энергией поверхностного натяжения γ на двух свободных поверхностях трещины [26, 27]

$$U_{\rm m} = 12\gamma L \ . \tag{20}$$

Общее уравнение энергии тела с трещиной

$$\Delta W = \Delta U + U_{\rm II} = -\frac{\sigma_{\rho}^2}{4E}\pi L^2 + 12\gamma L \,. \tag{21}$$

Такое изменение энергии справедливо для тела, содержащего одну трещину. В процессе взрыва на разрушение капсулы затрачивается работа, которая равна общей энергии разрушения. В результате этого в теле капсулы возникнет *N* трещин, число которых определяется уравнением

$$N\Delta W = N \left(-\frac{\sigma_{\rho}^2}{4E} \pi L^2 + 12\gamma L \right) = E_{\text{pasp}}, \qquad (22)$$

где E_{pasp} – общая энергия разрушения капсулы, равная

$$E_{\text{pasp}} = \sum_{i=1}^{n} E_{\text{pasp},i} = \sum_{i=1}^{n} \left[\frac{P_i}{k-1} \frac{V_3}{n^2} - \frac{P_i'}{k-1} \pi \left(l_3 + h_j \right) \frac{r_3^2}{n^2} - \frac{\pi}{2} \rho_{\text{BB}} U^2 h_j \frac{r_3^2}{n^2} \right].$$
(23)

В формуле (23) необходимо учесть, что h_i определяется по формуле (5).

Скорость раскрытия трещин $V_{\rm Tp}$ соответствует изменению энергии разрушения во времени:

$$\frac{dE_{\text{pagp}}}{dt} = N\left(-\frac{\sigma_p^2}{4E}\pi L + 12\gamma\right) = N\left(-\frac{\sigma_p^2}{4E}\pi L + 12\gamma\right)V_{\text{Tp}},$$
(24)

где

$$\frac{dE_{\text{pasp}}}{dt} = -\pi \frac{r_{3}^{2}}{n^{2}} \sum_{i=1}^{n} \left(\frac{P_{i}'}{k-1} + \frac{\rho_{\text{BB}}U^{2}}{2} \right) \frac{dh_{j}}{dt}.$$
(25)

Знак минус в формуле (25) показывает, что происходит уменьшение энергии за счет затрат на зарождение и развитие трещин. Таким образом, скорость разрушения капсулы равна

$$V_{\rm Tp} = \pi \frac{r_{\rm s}^2}{n^2} \sum_{i=1}^n \left(\frac{P_i'}{k-1} + \frac{\rho_{\rm BB} U^2}{2} \right) \frac{dh_j}{dt} / N \left(\frac{\sigma_{\rm p}^2}{4E} \pi L - 12\gamma \right), \tag{26}$$

а время ее разрушения

$$t_1 = \Delta h / V_{\rm Tp}. \tag{27}$$

После разрушения капсулы начинаются процессы фильтрации ПД через зернистую забойку и происходит ее выброс [16–18, 25]. Время задержки вылета ПД t_1 увеличивается, по сравнению с другими видами забойки, на время разрушения капсулы в скважине.

Скорость разрушения капсулы (26) содержит множитель dh_j/dt , который можно представить в виде $d(Ut_j)/dt \approx U$, где t_j – время прохождения h_j ударной волной со скоростью U, присущей данному BB, и $V_{\rm Tp}$ можно записать как

$$V_{\rm rp} = \pi \frac{r_{\rm s}^2}{n^2} \frac{U}{N} \frac{\frac{1}{k-1} \sum_{i=1}^n P_i' + n \frac{\rho_{\rm BB} U^2}{2}}{\pi L \frac{\sigma_P^2}{2E} - 12\gamma} .$$
(28)

В качестве примера рассмотрим скважину радиусом $r_c = 125$ мм. Взрывчатое вещество – граммонит 79/21, $\rho_{\rm BB} = 1,69$ г/см³, скорость детонации D = 4000 м/с, U = 1550 м/с, над ВВ помещена капсула с криволинейной поверхностью из ударопрочного полистирола УПМ-703 толщиной $\Delta h = 0,003$ м, $\sigma_{\rm P} = 500...600$ кгс/см², $E = 1 \cdot 10^4$ кгс/см². Радиус скважины (заряда) разделим на 10 равных частей ($\Delta r = 0,1r_3$) и рассмотрим разрушение капсулы в средней части (m = 5, k = 1, 4). После вычислений по формуле (28) получим, что скорость разрушения капсулы $V_{\rm Tp}$ без учета засыпки равна 6,55536 · 10⁴ м/с, а время ее разрушения *t* составляет 4.576 · 10⁻⁷ с.

Выводы

Рассмотрен процесс взрывного разрушения забойки оригинальной конструкции, определяемой ее геометрией и свойствами материала. Время пребывания ПД в скважине увеличивается на время, необходимое на разрушение такой забойки, что увеличивает долю энергии взрыва, затрачиваемую на полезную работу – дробление породы. Рассмотренная забойка позволяет увеличить объем дробления, следовательно, уменьшить количество скважин и затраты на взрывные работы.

После подачи данной работы в печать опубликована работа [28], в которой рассмотрен частный случай забойки с криволинейной поверхностью, а именно: сферической. Кроме того, в [28] давление от действия взрыва заряда определяется через потенциал волны, что при наличии турбулентности ПД и градиентности их давления не совсем корректно.

Публикуемая работа является частью научной работы, выполненной в ННИИОТ и приведенной в отчете в 2004 г.

1. Баум Ф. А., Сансарян Н. С. Импульсы взрыва, обусловленные боковым распором забойки в скважине // Взрывное дело. – М.: Недра, 1966. – № 59/16. – С. 28–32.

2. Миндели Э. О., Демчук П. А., Александров В. Е. Забойка шпуров. – М.: Недра, 1967. – 152 с.

3. Исследование влияния материала забойки на скорость вылета и прорыва газообразных продуктов / М. Ф. Друкованый, Э. И. Ефремов, В. М. Комир, И. А. Семенюк, С. Т. Сурначева // Механика и разрушение горных пород. – М.: Недра. – 1969. – Вып. 1. – С. 121–128.

4. Семенюк И. А., Оберемок О. Н. Взрывные работы на открытых горных разработках. – Днепропетровск: Промінь, 1974. – 55 с.

5. Комплексное исследование действия взрыва в горных породах / Э. О. Миндели, Н. О. Кусов, А. А. Корнеев, Г. И. Марцинкевич. – М.: Недра, 1978. – 253 с.

6. Исаков А. А., Коковкин В. П. Модельные исследования поведения забойки и расчет импульса при взрыве скважинных зарядов. – ФТПРПИ. – 1979, № 4. – С. 29–38.

7. *А.с. 1251653* СССР, МКИ Е21С 37/00. Способ комбинированной забойки скважинного заряда ВВ / В. М. Комир, В. В. Воробьев, Э. И. Ефремов и др. // Заявл. 6.12.84, № 3821500.

8. Исследования эффективности комбинированной забойки / Н. И. Мячина, В. Г. Назаренко, В. И. Нападало и др. // Деп. в ВИНИТИ, 1.08.85, № 5755-85, Реф. № 10Б127.

9. *Гурин А. А., Ященко С. С.* Применение гидрогелевой забойки взрывных скважин // Безопасность труда в промышленности. – 1986, № 1. – С. 38–39.

10. *Ташкинов А. С., Бирюков А. В.* Роль и эффективность забойки при взрыве скважинного заряда // Открытая разработка угольных месторождений. – Кемерово: Кузбасский политехнический институт. – 1987. – С. 10–17.

11. *Разрушение горных пород* энергией взрыва / Э. Н. Ефремов, В. С. Кравцов, Н. Н. Мячина, В. Д. Петренко и др. – К.: Наук. думка, 1987. – 264 с.

12. Повышение эффективности действия взрыва в твердой среде / В. М. Комир, В. М. Кузнецов, В. В. Воробьев, В. Н. Чебенко. – М.: Недра, 1988. – 209 с.

13. *Влияние конструкции забойки* и запирающих зарядов на качество взрывной отбойки / С. П. Акинфиев, А. И. Незговоров, И. С. Иванова, Г. П. Кобельков, В. В. Бренинский, Н. Г. Волченко // Горный журнал. – 1988. – № 4. – С. 35–37.

14. *Яковенко В. Г., Бекетаев Е. Б., Берг А. И.* Применение забойки переменной плотности // Цветметинформация. – 1990. – № 6. – С. 37–39.

15. *Ресурсосберегающие технологии* взрывного разрушения горных пород / Э.И. Ефремов, В. М. Комир, И. А. Краснопольский, В. П. Мартыненко. – К.: Техника. – 1990. – 149 с.

16. Ищенко К. С. Влияние конструкции шпурового заряда с использованием различных забоечных материалов, влияющих на процесс трещинообразования при взрыве // Повышение эффективности разрушения горных пород. – К.: Наук. думка, 1991. – С. 59–61.

17. *Ефремов Э. Н., Родак С. Н.* Роль забойки скважинного заряда в запирании газообразных продуктов детонации // Повышение эффективности разрушения горных пород. – К.: Наук. думка, 1991. – 140 с.

18. Ищенко К. С. Исследование конструкций шпуровых зарядов с использованием различных забоечных материалов, влияющих на процесс

разрушения среды при взрыве // Техника и технология горного производства. – К.: Наук. думка. – 1993. – С. 23–28.

19. Проблемы экологии массовых взрывов в карьерах / Э. И. Ефремов, П. В. Бересневич, В. Д. Петренко и др. – Днепропетровск: Січ, 1996. – 179 с.

20. Петренко В. Д., Никифорова В. А., Коновал В. Н. Теоретические оценки времени вылета забойки из мелко раздробленной породы при взрыве // Геотехническая механика. – Днепропетровск: ИГТХ НАН Украины. – 1997. – Вып. 3. – С. 86–89.

21. *Александрова Н. И., Шер Е. Н.* Влияние забойки на разрушение горных пород взрывом цилиндрического заряда // ФТПРПИ. – 1999. – № 5. – С. 42–52.

22. *Александрова Н. И., Шер Е. Н.* Влияние утечек газов из полости взрыва сферического заряда на разрушение горных пород // ФТПРПИ. – 2000. – № 5. – С. 43–53.

23. *Ефремов Э. И., Ищенко К. С., Никифорова В. А.* Исследование движения забойки в шпурах // Уголь Украины. – 2000. – № 6. – С. 20–22.

24. Ефремов Э. И., Мартыненко В. П., Бережецкий А. Я. Способ повышения эффективности взрыва и локализации пылегазовых выбросов // Вісник Кременчуцького ДПУ. – Кременчуг, 2000. – Вип. 2. – С. 3–5.

25. *Снижение техногенной нагрузки* на окружающую среду при использовании простейших ВВ и специальной забойки / Э. И. Ефремов, А. Я. Бережецкий, А. В. Пономарев, В. В. Баранник, В. П. Куприн // Екологія і природокористування. – Дніпропетровськ. – 2003. – Вып. 5. – С. 137–140.

26. *Кузнецов В. М.* Математические модели взрывного дела. – Новосибирск: Наука, 1977. – 262 с.

27. Воробьев В. Д., Масюкевич А. М., Косьмин И. В. О радиусе воронки дробления в скальных породах при взрыве удлиненного заряда взрывчатого вещества // Вісник НТУУ «КПІ». Серія "Гірництво": Зб. наук. праць. – К.: НТУУ «КПІ». – 2002. – Вип. 7. – С. 44–54.

28. *Бережецкий А. Я.* Эффективность применения капсулы с ингибитором в забойке скважинных зарядов // Вісник НТУУ «КПІ». Серія "Гірництво": Зб. наук. праць. – К.: НТУУ «КПІ». – 2002. – Вип. 7. – С. 114–120.