« ». « . – 2009. – . 18

622.235

. . , , , . . . (

Research results on interaction of shock waves with homogeneous rocks at explosions of cylindrical charges of reference and new industrial mixed explosives in limestones, granitoids and quartzites are set out.

Key words: explosion, explosives, rocks, destruction, cylindrical charge.

,

, ,

-

[1–3].

 a_0 . P_n

 $P(a) = A^{-n} + B^{-\gamma + 1}. \tag{1}$

 $, \quad , \quad n, \quad \gamma \tag{1}$

,

,

[4–7].

 $v_{
m max}.$

: $a \le r \le b$ $r \ge a$. a(t) - c, b(t) - c

 $\dot{b} \le v_{\text{max}}$ $b \le r \le l$,

l(t) - $r \ge l(t)$ [7].

,

 $\frac{\dot{r}}{(r, r')}$ $\left(\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r}\right) = \frac{\partial_{r}}{\partial r} + \frac{r}{r}$ (2)

 $(\partial t \quad \partial r) \quad \partial r \quad r$ $\rho - \quad ; v - \quad ; _r, -$

. - [4]

 $= C - \mathbf{\sigma} \cdot \mathbf{tg} \quad , \tag{3}$

, – ; –

.

 $_{r} = -P(a)$ r = a(t).

$$a_0$$
, $-a_0/c_0$ ($c_0 = \sqrt{E/}$ -), $-E$ (7],

$$K_{1}(a)a\ddot{a} + \left(K_{1}(a) - K_{2}(a)\dot{a}^{2}\right) + K_{3} - P(a) = 0, \tag{4}$$

$$K_{1}(a) = \left(\left(1 + \right) \alpha\right) \left[m^{-/(1+)} - \right];$$

$$K_2 = ((1+)(m+))[-m^{-(2+m+)}] - (a(a-))m;$$
 (5)

$$K_3 = ((Y_2 + 2(1 + {}_2)p) (+ {}_2) + Y) m^{/(1+\alpha)} - Y , m = n\sqrt{1-1/a^2} = b/a.$$

$$\overline{K}_{1}(a) = ((1+)\alpha) [m^{/(1+)} -], \quad \overline{K}_{2} = ((1+)(+)) [-m^{-(2+)}],$$

$$\overline{K}_{3} = (_{1} + Y/\alpha) (m^{/(1+)} - 1) + _{1},$$
(6)

$$_{1} < _{c} = \frac{\left(a^{2}-1\right)/\left(2b^{2}\right)+\left(1+\nu\right)p\left(2\left(1-\nu\right)l/b-1+2\nu\right)}{\left(1+\nu\right)+\left(1-\nu^{2}\right)\ln\left(l/b\right)}.$$

$$i = \begin{cases} 0 & < 0 \\ \frac{v_{\text{max}}}{c_0} \frac{1 - \exp(-\sqrt{0} - 1)}{1 - \exp(-(\sqrt{10} - 1))} & 0 & 1 \\ \frac{v_{\text{max}}}{c_0} & \ge 1 \end{cases}$$

$$(7)$$

:

. 2.

1. -

2 / 3	2700	2250	2.000
ρ, / 3	2500	3350	2690
$E \cdot 10^{-10}$,	3,4	4,1	4,6
	0,25	0,16	0,12
$G \cdot 10^{-10}$,	1,36	1,77	2,05
$Y_2 = {}_c \cdot 10^8,$	0,5	0,8	0,62
$Y_2 = {}_c \cdot 10^8,$ ${}_p \cdot 10^7,$	0,45	0,72	0,57
$C \cdot 10^{-5}$,	30	98	44
φ,	42	42	41
v , /	1766	2169	2556
- :			
0, / 2	54,1	119,3	63,7
1, / 2	216,4	477,2	254,8
/ 2	4,04/10,11	4,04/10,11	3,81/9,877

2.

		ρ,		,		$B\cdot 10^5$,		-
	,	/ 3	, /	$\cdot (\cdot)^{-n_0}$	n_0	$\left(\cdot 3 \right)^{-\gamma_0-1}$	0+1	,
1	4312,4	950	3300	2,7769	2,82	1,452	1,248	1,46
2	3885,3	850	2500	1,112×10 ⁻⁵	4,41	1,502	1,264	0,834
3	3864,4	872	3150	5,67	2,73	1,279	1,245	1,234
4	3943,9	875	3600	56,682	2,47	1,015	1,245	1,587
5	3604,0	950	3700	43,96	2,48	0,772	1,242	2,085
6	3366,0	1000	3900	59,345	2,48	0,4048	1,242	3,07
7	3919,7	852	2550	7,671	2,24	1,638	1,235	0,95

« ». « . – 2009. – . 18

 a / a_0

. 2. $/a_0$ $/a_0$ 2,5 -2,5 2,0 2,0 -1,5 1,5 -1,0 - $|t \cdot c_0/a|_{1,0}$ $\int t \cdot c_0/a$ 100 10 10 100

. 1.

 $\begin{array}{ccc} .& 2, & , & \\ & & b / a_0 & & & \\ & & & & \end{array}$

. 2.

. 2 ,

 $\begin{array}{c} \cdot \\ 4\text{-} \ 10 \\ \hspace{1cm} b \, / \, a_0 \, . \end{array} \hspace{2cm} ,$

8 « ». « .–2009.– .18

. 3, ,

.

 l/a_0 ,

7 /

.

4- 10

. 3.

 $a \, / \, a_0 \, , \qquad \qquad b \, / \, a_0 \,$ $l \, / \, a_0 \,$

· ,

 a/a_0 , b/a , l/a_0 , .

, (, , ,).

, , ,

.

 l/a_0

 l/a_0 4- 10 79/21. n

79/21 4- 10,

1. //

. – 2000. – 12. – . 31–34.

2.

, 1998. –140 . 3.

.// ,, 2003. –

« ». 4.

// . - 1988. - 1. - . 164–167.

5. / [. .]. - .: , 1971. - 220 .

. – 1997. – 3. – . 174–183. // 7.

// . – 1982. – 2. - . 40–42.