(

622.235

,

:

:

,

Research results on interaction of shock waves with homogeneous rocks at explosions of cylindrical charges of reference and new industrial mixed explosives in limestones, granitoids and quartzites are set out.

Key words: explosion, explosives, rocks, destruction, cylindrical charge.

[1–3].

•

 a_0 .

•

,

•

,

,

() *ρ_n*,

$$P(a) = A^{-n} + B^{-\gamma + 1}.$$
 (1)

,

[4–7].

 P_n

;

•

,
$$n, \gamma$$
 (1)

,

: $a \le r \le b$ $r \ge a$. a(t) -, b(t) - , r -

$$\dot{b} \leq v_{\max} \qquad \qquad b \leq r \leq l,$$

$$l(t) - \qquad \qquad . \qquad r \geq l(t)$$
[7].

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(2\right)$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(2\right)$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(2\right)$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(2\right)$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{\partial}{\partial r} + \frac{r}{r} - \frac{r}{r}.$$

$$\left(\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r}\right) = \frac{r}{r} - \frac{r}{r} - \frac{r}{r}.$$

$$(2)$$

$$r = -P(a)$$
 $r = a(t)$.

$$a_0, -a_0/c_0 (c_0 = \sqrt{E/} -), -E.$$

 $a(t) (7], (7)$

a(t)

$$K_{1}(a)a\ddot{a} + \left(K_{1}(a) - K_{2}(a)\dot{a}^{2}\right) + K_{3} - P(a) = 0, \qquad (4)$$
$$K_{1}(a) = \left(\left(1 + \frac{1}{2}\right)\alpha\right) \left[m^{-1/(1+1)} - \frac{1}{2}\right];$$

$$K_{2} = \left(\left(1 + \right) \left(+ \right) \right) \left[-m^{-(2+} + \right] - \left(a - \left(a - \right) \right) m \right];$$
(5)

$$K_{3} = \left(\left(Y_{2} + 2\left(1 + {}_{2}\right) p \right) \left(+ {}_{2}\right) + Y \right) m^{/(1+\alpha)} - Y \quad , \ m = n\sqrt{1 - 1/a^{2}} = b/a \, .$$

$$\begin{array}{c} r = -P(a) \\ u(b-0) = u(b+0), \\ u(l-0) = u(l+0), \\ u(l-0) = u(l+0), \\ \end{array}$$

$$\overline{K}_{1}(a) = ((1+) \alpha) [m^{/(1+)} -], \quad \overline{K}_{2} = ((1+) (+)) [-m^{-(2+)}],$$

$$\overline{K}_{3} = (-1 + Y / \alpha) (m^{/(1+)} - 1) + -1, \quad (6)$$

$$_{1} < _{c} \qquad _{1} = \frac{\left(a^{2} - 1\right)/\left(2b^{2}\right) + \left(1 + \nu\right)p\left(2\left(1 - \nu\right)l/b - 1 + 2\nu\right)}{\left(1 + \nu\right) + \left(1 - \nu^{2}\right)\ln\left(l/b\right)}.$$

$$l(t) = \begin{cases} 0 & < 0 \\ \frac{v_{\max}}{c_0} \frac{1 - \exp(-\sqrt{0} - 1)}{1 - \exp(-(\sqrt{10} - 1))} & 0 & 1 \\ \frac{v_{\max}}{c_0} & > 1 \end{cases}$$
(7)

•

•

0, 1

(4)–(7)

:

•	
•	
•	
	1.

_

,

1.

-

- / ³	2500	2250	2600
ρ, /	2300	3330	2090
$E\cdot 10^{-10}$,	3,4	4,1	4,6
	0,25	0,16	0,12
$G \cdot 10^{-10}$,	1,36	1,77	2,05
$Y_2 = {}_c \cdot 10^8,$	0,5	0,8	0,62
$p \cdot 10^{-7}$,	0,45	0,72	0,57
$C \cdot 10^{-5}$,	30	98	44
φ,	42	42	41
v , /	1766	2169	2556
:	-		
0, / 2	54,1	119,3	63,7
1, / 2	216,4	477,2	254,8
	4,04/10,11	4,04/10,11	3,81/9,877

2.

		ρ,		,		$B \cdot 10^5$,		-
	,	/ 3	-	$\cdot (\cdot \cdot 3)^{-n_0}$	n_0	$(\cdot 3)^{-\gamma_0 - 1}$	₀ +1	,
	/		, /					
1	4312,4	950	3300	2,7769	2,82	1,452	1,248	1,46
2	3885,3	850	2500	1,112×10 ⁻⁵	4,41	1,502	1,264	0,834
3	3864,4	872	3150	5,67	2,73	1,279	1,245	1,234
4	3943,9	875	3600	56,682	2,47	1,015	1,245	1,587
5	3604,0	950	3700	43,96	2,48	0,772	1,242	2,085
6	3366,0	1000	3900	59,345	2,48	0,4048	1,242	3,07
7	3919,7	852	2550	7,671	2,24	1,638	1,235	0,95
		2		17	$9/21 \cdot 2$	_ · 3 _		4- 10.

«

. 1.

:

,

•

. 2

4- 10 79/21*b* / *a*₀.

. 3.

.

,

 l / a_0

,

$$l / a_0$$
 , 4- 10 ,
79/21. , 4- 10, ,
79/21 , 4- 10, .

,

,

,

,

,